If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50x^2+100x-1=0
a = 50; b = 100; c = -1;
Δ = b2-4ac
Δ = 1002-4·50·(-1)
Δ = 10200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10200}=\sqrt{100*102}=\sqrt{100}*\sqrt{102}=10\sqrt{102}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-10\sqrt{102}}{2*50}=\frac{-100-10\sqrt{102}}{100} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+10\sqrt{102}}{2*50}=\frac{-100+10\sqrt{102}}{100} $
| 50x^2+50x-100=0 | | 100x-200=50x+400 | | 3x-x*x=36 | | 1.8x-9.6=x | | -(8-x)=-(5+2x) | | -2x-50=30 | | 2/3x-2=26-10/3x | | (Ax2)+125= | | 8(x-1)=3*(4+2x) | | 13+11xX=4 | | 7x-26=3x+108(x-1)=3*(4+2x) | | 2x-1-√x=0 | | 2x-(x-1)=14 | | 2*(x-5)=30 | | 10.6n+9=2n-23 | | 3*4(2k+8)=24 | | 5.6n=-39.2 | | 2÷(7m)=8÷24 | | 32n-2=6 | | 2÷(7m)=8/21 | | 63=5u+4u | | 10*(1/10x)*25(1/25x)=1500 | | 10x*25x=1500 | | 0.14x*0.1x=0 | | 9x-6x=-42 | | 4(2x-3)=-3(x+1) | | (7+1)+n=(4+7)-1 | | -10(x-13)=230 | | 14-16x=-13x+11 | | -(x+54)=-10(x+9) | | 7x=(2/3)+(10/7) | | 7x=2/3+10/7 |